Aggregative Soil Sampling Using Boot Covers Compared to Soil Grabs From Commercial Romaine Fields Shows Similar Indicator Organism and Microbial Community Recoveries

Highlights Abstract Aggregative boot cover sampling may be a more representative, practical, and powerful method for preharvest produce soil testing than grab sampling because boot covers aggregate soil from larger areas. Our study tests if boot cover sampling results reflect quality and safety indicator organisms and community diversity of grab sampling. We collected soil samples […]

Simulation Evaluation of Power of Sampling Plans to Detect Cronobacter in Powdered Infant Formula Production

Highlights Abstract Cronobacter is a hazard in Powdered Infant Formula (PIF) products that is hard to detect due to localized and low-level contamination. We adapted a previously published sampling simulation to PIF sampling and benchmarked industry-relevant sampling plans across different numbers of grabs, total sample mass, and sampling patterns. We evaluated performance to detect published Cronobacter contamination profiles […]

Efficacy of electron beam irradiation in reduction of mycotoxin-producing fungi, aflatoxin, and fumonisin, in naturally contaminated maize slurry

Highlights Abstract Maize is a staple food in Kenya. However, maize is prone to fungal infestation, which may result in production of harmful aflatoxins and fumonisins. Electron beam (eBeam) food processing is a proven post-harvest technology, but published literature is rare on the ability of eBeam to reduce mycotoxins in naturally contaminated maize samples. This study evaluated the efficacy of […]

A Validated Preharvest Sampling Simulation Shows that Sampling Plans with a Larger Number of Randomly Located Samples Perform Better than Typical Sampling Plans in Detecting Representative Point-Source and Widespread Hazards in Leafy Green Fields

Abstract Commercial leafy greens customers often require a negative preharvest pathogen test, typically by compositing 60 produce sample grabs of 150 to 375 g total mass from lots of various acreages. This study developed a preharvest sampling Monte Carlo simulation, validated it against literature and experimental trials, and used it to suggest improvements to sampling […]

Enabling cost-effective screening for antimicrobials against Listeria monocytogenes in ham

Highlights Abstract Ready-to-eat meat products, such as deli ham, can support the growth of Listeria monocytogenes (LM), which can cause severe illness in immunocompromised individuals. The objectives of this study were to validate a miniature ham model (MHM) against the ham slice method and to screen antimicrobial combinations to control LM on ham by using response surface […]

Persistent and sporadic Listeria monocytogenes strains do not differ when growing at 37°C, in planktonic state, under different food associated stresses or energy sources

Abstract Background The foodborne pathogen Listeria monocytogenes causes the potentially lethal disease listeriosis. Within food-associated environments, L. monocytogenes can persist for long periods and increase the risk of contamination by continued presence in processing facilities or other food-associated environments. Most research on phenotyping of persistent L. monocytogenes’ has explored biofilm formation and sanitizer resistance, with less data examining persistent L. monocytogenes’ […]

CRISPR-Based Subtyping Using Whole Genome Sequence Data Does Not Improve Differentiation of Persistent and Sporadic Listeria monocytogenes Strains

Abstract The foodborne pathogen Listeria monocytogenes can persist in food-associated environments for long periods. To identify persistent strains, the subtyping method pulsed-field gel electrophoresis (PFGE) is being replaced by whole genome sequence (WGS)-based subtyping. It was hypothesized that analyzing specific mobile genetic elements, CRISPR (Clustered Regularly Interspaced Short Palindromic Short Repeat) spacer arrays, extracted from […]